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Abstract

External and internal bending–torsion coupling effects of a rotor system with comprehensive unbalances are studied by

analytical analysis and numerical simulations. Based on Lagrangian approach, a full-degree-of-freedom dynamic model of

a Jeffcott rotor is developed. The harmonic balance method and the Floquet theory are combined to analyze the stability

of the system equations. Numerical simulations are conducted to observe the bending–torsion coupling effects. In the

formulation of rotordynamic model, two bending–torsion coupling patterns, external coupling and internal coupling, are

suggested. By analytical analysis, it is concluded that the periodic solution of the system is asymptotically stable. From

numerical simulations, three bending–torsion coupling effects are observed in three cases. Under static unbalance,

synchronous torsional response is observed, which is the result of external coupling under unbalanced force. Under

dynamic unbalance, two-time synchronous frequency torsional response is observed, which is the result of internal

coupling under unbalanced moment. Under comprehensive unbalance, synchronous and two-time synchronous frequency

torsional components are observed, which are the results of both external and internal couplings under unbalanced force

and moment. These observations agree with the analytical analysis. It is believed that these observed phenomena should

make sense in the dynamical design and fault diagnostics of a rotor system.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

Rotor’s vibration is a complicated kinetical and dynamical phenomenon. It seriously affects the normal
operation of a system and even leads to catastrophic consequences. So far, large amount of research work has
been done and great progresses have been made for the problem. With the development of high performance
turbomachinery, it becomes a great challenge to researchers in that the problem gets more and more
complicated with the more and more sophisticated system on one hand, the requirement for stability and
reliability grows higher and higher on the other. Therefore, it is required that the rotordynamic model of a
system account for all the factors that could affect the dynamic behaviors of the system. Among them is
bending–torsion coupling in the vibration of a rotor system.
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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For bending–torsion coupling, researches have been done in many aspects. In rotordynamic modeling,
Mohiuddin and Khulief [1] derived an elastodynamic model of coupled bending and torsional system using the
Lagrangian approach. The model accounted for the gyroscopic effects as well as the inertia coupling between
bending and torsional deformations and therefore provided an efficient tool for dynamic analysis of rotor-
bearing systems. Liu et al. [2] constructed the nonlinear dynamic model of a rotor with coupled bending and
torsional vibrations and studied the nonlinear dynamic characteristics of the rotor. In dynamics of unbalanced
rotor systems, Huang et al. [3] derived a rotordynamic model of a Jeffcott rotor under unbalance that
accounted for bending–torsion coupling, with the consideration of three degrees of freedom (dofs), including
two lateral displacements and a torsional angle, and obtained the dynamic characteristics of the unbalanced
rotor with bending–torsion coupling by solving the nonlinear differential equations using Wilson-ymethod. In
dynamics of rotor’s rub-impacts, Al-Bedoor [4] presented a model for the coupled torsional and lateral
vibrations of unbalanced rotors with rotor-to-stator rubbing using Lagrangian dynamics. The model
accounted for the rotor rigid-body rotation, the rotor torsional deformation and two orthogonal lateral
deflections of the rotor. It was pointed out that the inclusion of rotor torsional flexibility had introduced
irregular rubbing orbits. And also, a split in resonance was observed due to the rubbing condition when the
rotor torsional flexibility was considered. Sun et al. [5] established a mathematical model of an impacting-rub
rotor system with bending–torsion coupling and discussed the influence of bending–torsion coupling on the
dynamic characteristics of an impacting-rub rotor system by a comparison with the model without
bending–torsion coupling. In dynamics of cracked rotors, Xiao and Yang [6] investigated the bending–tor-
sional coupled vibration of a level Jeffcott rotor containing a switching transverse crack. It was concluded that
torsional vibration could greatly influence the dynamic behaviors of a rotor with switching transverse cracks.
Zhao et al. [7] researched the bending–torsion coupling characteristics of cracked rotors and analyzed the
influences of torsional vibration on lateral vibration. It was pointed out that the bending–torsion coupling
effects could undermine the dynamic characteristics of cracked rotor. Zhu and Zhao [8] studied the coupled
vibration of a cracked rotor. In dynamics of rotor and blade, de Goeij et al. [9] investigated the
implementation of bending–torsion coupling of a composite wind turbine rotor blade to provide passive pitch-
control. Al-Bedoor [10] developed a dynamic model of coupled shaft torsional and blade bending
deformations in rotors. The model accounted for all the dynamic coupling terms between the system
reference rotational motion, shaft torsional deformations and blade bending deformations.

In this paper, the bending–torsion coupling effects are investigated with differences in two ways from
previous researches. The rotordynamic model is established in all the six dofs of a rotor other than in three or
four dofs as in previous researches. On the other hand, comprehensive unbalances including static unbalance
and dynamic unbalance as excitations are involved in the model instead of only involving static unbalance as
suggested in previous literatures.
2. Dynamic model

2.1. Basic definitions and assumptions

The system dynamic model is developed based on a Jeffcott rotor with the following assumptions: (1) the
model adopts the simple Jeffcott approach that considers the system as a rigid disk mounted midway between
the two supports on a massless flexible shaft; (2) the system has proportional damping, i.e., the system
damping is proportional to velocity; (3) only the unbalances are considered as external excitations; (4)
gyroscopic effects is taken into account; and (5) all the six dofs of the disk are involved.

In Fig. 1, oxyz is a fixed coordinate system. o0xZz is a rotating coordinate system with the rotor. o is the
center of the static rotor. o0 is the center of the running rotor. E is the mass center of the rotor. me is
the quantity of mass unbalance. The oxyz and o0xZz are identical when the rotor is at rest. Assume that the
generalized coordinate vector of the rotor is fqg ¼ ½ x yy y yx z yz �T, where x, y and z are
the displacements of the disk center in x, y and z directions, respectively, yx and yy are the pitching angles
of the disk around axes x and y, respectively, yz is the torsional angle (caused by torsional deformation) of the
shaft around axis z at the disk center. The equation of motions of the rotor is developed as follows.
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Fig. 1. Definitions of coordinate systems and variables.
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2.2. Derivation of system equations of motion

The kinetic energy of the rotor can be defined by

T ¼
1

2
m _x2 þ _y2 þ _z2
� �

þ
1

2
Jd
_y
2

x þ Jd
_y
2

y þ Jp
_yz þ O
� �2h

�2Jpyx
_yy

_yz þ O
� ��

, ð1Þ

where m is the mass of the rotor, Jd and Jp are the diameter and polar inertia moments of the rotor disk
respectively, O is the rotating angular velocity of the rotor.

The elastic potential energy of the system is defined as

V ¼
1

2
kxx2 þ kyyy

2
y þ kyy2 þ kyxy

2
x þ kzz

2 þ kyzy
2
z

� �
, (2)

where kx, ky and kz are the stiffness coefficients corresponding to x, y and z, respectively, kyx; kyy and kyz are
the stiffness coefficients corresponding to yx, yy and yz, respectively.

Using the Lagrangian approach, the equations of motion of the system are derived as

M½ � €q
� �
þ C½ � _q

� �
þ K½ � q

� �
¼ Qf g, (3)

where {Q} ¼ {Qc}+{Qu} is the generalized force vector; fQcg ¼ ½ 0 Mcy 0 Mcx 0 Mcz �T is the internal
coupling force vector, which will be defined in Section 2.3; fQug ¼ ½Fux Muy Fuy Mux 0 Muz �T is the
external coupling unbalanced force vector, which includes static and dynamic unbalanced forces and will be
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defined in Section 2.4; [M] ¼ diag(m, Jd,m, Jd,m, Jp) is the inertia matrix;

C½ � ¼

cx 0 0 0 0 0

0 cyy 0 OJp 0 0

0 0 cy 0 0 0

0 �OJp 0 cyx 0 0

0 0 0 0 cz 0

0 0 0 0 0 cyz

2
6666666664

3
7777777775

is the damping matrix with the gyroscopic effects embedded in it; K½ � ¼ diag kx; kyy; ky; kyx; kz; kyz

� �
is the

stiffness matrix. The other elements except for the gyroscopic term OJp in [C] are determined by experience.
The elements in [K] are calculated by static analysis with influence coefficient method, with the shaft being
regarded as a simply supported beam.

2.3. Definition of internal coupling forces

From the formulation of Eq. (3), the nonlinear internal coupling forces can be defined as

Mcx ¼ � Jp
_yy
_yz,

Mcy ¼ Jp
_yx
_yz þ yx

€yz

� �
,

Mcz ¼ Jp
_yx
_yy þ yx

€yy

� �
. ð4Þ

2.4. Development of external coupling forces

Through kinetical analysis and by using Dalembert principle, the external coupled unbalanced forces can be
stated as

Fux ¼ me1 Oþ _yz

� �2
cos Otþ yz þ f1

� �
þ €yz sin Otþ yz þ f1

� �h i
,

F uy ¼ me1 Oþ _yz

� �2
sin Otþ yz þ f1

� �
� €yz cos Otþ yz þ f1

� �h i
,

Fuz ¼ 0,

Mux ¼ me2h Oþ _yz

� �2
sin Otþ yz þ f2

� �
� €yz cos Otþ yz þ f2

� �h i
,

Muy ¼ �me2h Oþ _yz

� �2
cos Otþ yz þ f2

� �
þ €yz sin Otþ yz þ f2

� �h i
,

Muz ¼ me1 €x sin Otþ yz þ f1

� �
� €yþ gð Þ cos Otþ yz þ f1

� �� �
. ð5Þ

3. Analytical analysis

The above developed dynamic model is nonlinear. The harmonic balance method and the Floquet theory
are combined to give qualitative analysis of the stability of the system. First, a stable periodic solution of the
system equation is obtained with the harmonic balance method. Then, the equation is perturbed at the
obtained solution to get the perturbation equation. Finally, the zero solution stability of the perturbation
equation is analyzed with the Floquet theory, and accordingly the periodic solution stability of the system is
determined. It is concluded that: (1) when the system is subject to static unbalance, there is sole synchronous
vibration in x, y and yz; (2) when the system is subject to dynamic unbalance, there is sloe synchronous
vibration in yx and yy and there is sole two-time synchronous frequency vibration in yz; (3) when the system is
subject to comprehensive unbalance, there is sole synchronous vibration in x, y, yx and yy, but there are both
synchronous and two-time synchronous frequency vibrations in yz.
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Table 1 lists the characteristic multipliers lio1(i ¼ 1, 2,y, 10) of the perturbation equation at different
rotating speeds. Fig. 2 gives an overview of the characteristic multipliers in the range of O/O0 ¼ 0.6692�10,
where O is rotating frequency, O0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kyz=Jp

p
.

In the light of Floquet theory, when lij jo1 ði ¼ 1; 2; . . . ; nÞ, the solution of the system is asymptotically
stable; if one or more than one of lij jo1 ði ¼ 1; 2; . . . ; nÞ is/are beyond one, the solution of the system is
unstable; if one or more than one of lij jo1 ði ¼ 1; 2; . . . ; nÞ equal(s) to one, the solution of the system is
critical.

From Table 1, it can be seen that the moduli of all the listed characteristic multipliers are less than one. This
indicates that the zero solution of the perturbation equation is asymptotically stable at the corresponding
rotating speeds. From Fig. 2 it can be clearly observed that the moduli of the characteristic multipliers are
roofed by the unit line in the full range of rotating speed and never touch the roof line. Therefore, it could be
concluded that the zero solution of the perturbation equation is asymptotically stable for all speeds. This
means that the solution of the system equation is asymptotically stable.
Table 1

Characteristics of bending–torsion couplings at different rotating speeds

O/O0 0.6692 2.0 4.0 6.0 8.0 10.0

l1 � 0.3812+0.0318i � 0.7258+0.0203i 0.0119+0.8520i 0.4566+0.7741i 0.6572+0.6481i 0.7618+0.5471i

l2 � 0.3812� 0.0318i � 0.7258� 0.0203i 0.0119� 0.8520i 0.4566� 0.7741i 0.6572� 0.6481i 0.7618� 0.5471i

l3 0.2578 0.6365 0.7978 0.8602 0.8932 0.9136

l4 0.2578 0.6365 0.7978 0.8602 0.8932 0.9136

l5 0 0.0288 0.1697 0.3065 0.4120 0.4920

l6 0 0.0288 0.1697 0.3065 0.4120 0.4920

l7 0 0.0192+0.0043i � 0.2126+0.2805i 0.2700+0.6043i 0.6272+0.5268i 0.8000+0.4022i

l8 0 0.0192� 0.0043i � 0.2126� 0.2805i 0.2700� 0.6043i 0.6272� 0.5268i 0.8000� 0.4022i

l9 0 0 � 0.0006+0.0008i 0.0030+0.0066i 0.0171+0.0143i 0.0406+0.0204i

l10 0 0 � 0.0006� 0.0008i 0.0030� 0.0066i 0.0171� 0.0143i 0.0406� 0.0204i

Asymptotically

stable

Asymptotically

stable

Asymptotically

stable

Asymptotically

stable

Asymptotically

stable

Asymptotically

stable

Notes: The axial vibration equation in Eq. (3) is removed in the analytical analysis to reduce the problem, for it does not couple with the

other five equations and does not affect the analysis results. Therefore, only 10 characteristic multipliers are obtained.
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Fig. 2. Overview of lij j in a large range of rotating speed.
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4. Numerical simulations

Since Eq. (3) is a set of nonlinear differential equations, the ODE solver ode45 in MATLAB is used for
numerical calculations. Three cases of unbalance, static, dynamic and comprehensive (the combination of the
former two), are considered here. Parameters related to the calculations are listed in Table 2.
5. Bending–torsion coupling effects

Figs. 3–8 demonstrate the bending–torsion coupling effects represented in torsional response in three cases.
They are the bending–torsion coupling effects under static unbalance, dynamic unbalance and comprehensive
unbalance, respectively.
5.1. Bending– torsion coupling effects under static unbalance

Fig. 3 displays the waveform and frequency spectrum of torsional response under static unbalance.
Evidently, a perfect synchronous torsional response is observed in the waveform and spectrum. It represents
the external bending–torsion coupling effect of the system under static unbalance, which is indicated by
Eq. (5). Fig. 4 is an overview of the coupling effects under static unbalance in a large range of rotating speed. It
is clearly shown that the sole synchronous torsional response appears in a large range of rotating speed. This
agrees with the analytical analysis.
Table 2

Parameters of the system

Parameters of the rotor

Mass of the rotor disk, m, kg 2

Diameter of the rotor disk, D, m 0.1

Mass eccentricity of the static rotor disk unbalance, e1, m 1� 10� 4

Static phase angle of the static rotor disk unbalance, j1, rad p/3
Mass eccentricity of the dynamic rotor disk unbalance, e2, m 3� 10� 3

Static phase angle of the dynamic rotor disk unbalance, j2, rad p/3
Arm length of the dynamic rotor disk unbalance, h, m 0.005

Parameters of the shaft

Diameter of the shaft, d, m 0.015

Total length of the shaft, L, m 0.5

Bending elastic modulus of the shaft, E, pa 2.1� 1011

Shearing elastic modulus of the shaft, G, pa 7.7� 1010

Fig. 3. Bending–torsion coupling effects under static unbalance at 15,000 rpm.
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Fig. 5. Bending–torsion coupling effects under dynamic unbalance at 15,000 rpm.

Fig. 4. Overview of the bending–torsion coupling effects under static unbalance.
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5.2. Bending– torsion coupling effects under dynamic unbalance

Fig. 5 displays the waveform and frequency spectrum of torsional response under dynamic unbalance.
Evidently, a perfect two-time synchronous frequency torsional response is observed in the waveform and
spectrum. It represents the internal bending–torsion coupling effect of the system under dynamic unbalance,
which is indicated by Eq. (4). Fig. 6 is an overview of the coupling effects under dynamic unbalance in a large
range of rotating speed. It is clearly shown that the sole two-time synchronous frequency torsional response
appears in a large range of rotating speed. This also agrees with the analytical analysis.

5.3. Bending– torsion coupling effects under comprehensive unbalance

Fig. 7 displays the waveform and frequency spectrum of torsional response under comprehensive un-
balance. Evidently, a perfect synchronous component and a perfect two-time synchronous frequency
component are observed in the waveform and spectrum of torsional response. They represent the
comprehensive bending–torsion coupling effects of the system under comprehensive unbalance, which are
the total results of external and internal couplings represented, respectively, by Eqs. (4) and (5). The
synchronous component is caused by external coupling with static unbalance, and the two-time synchronous
frequency component is caused by internal coupling with dynamic unbalance. Fig. 8 is an overview of the
coupling effects under comprehensive unbalance in a large range of rotating speed. It is clearly shown that the
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Fig. 7. Bending–torsion coupling effects under comprehensive unbalance at 15,000 rpm.

Fig. 6. Overview of the bending–torsion coupling effects under dynamic unbalance.
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synchronous and two-time synchronous frequency components appear in a large range of rotating speed. This
also agrees with the analytical analysis.

6. Conclusions

Through dynamic modeling, analytical analysis and numerical simulations, the internal and external
bending–torsion coupling effects of a Jeffcott rotor with unbalances are studied with the following
conclusions:
(1)
 Two bending–torsion coupling patterns, internal coupling and external coupling, are suggested in the
present rotordynamic model from theoretical formulation.
(2)
 Analytical analysis verifies that the system equations have asymptotically stable periodic solution and
justifies the numerical simulation results.
(3)
 Three bending–torsion coupling effects are observed from numerical simulations. Under static unbalance,
sole synchronous torsional response is observed, which is the result of external coupling under unbalanced
force. Under dynamic unbalance, sole two-time synchronous frequency torsional response is observed,
which is the result of internal coupling under unbalanced moment. Under comprehensive unbalance,



ARTICLE IN PRESS

Fig. 8. Overview of the bending–torsion coupling effects under comprehensive unbalance.
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a synchronous and a two-time synchronous frequency torsional components are observed, which are the
total results of both external and internal couplings under unbalanced force and moment. These results
agree with analytical analysis. It is believed that these observed phenomena should make sense in the
dynamical design and fault diagnostics of a rotor system.
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